[image: CCExtractor Logo]
	


	Docs
	[image: GitHub Repo]
	


Google Summer of Code (GSoC) 2020 ideas page
Welcome to our ideas page. It's great you want to start early. Please
join us in our slack channel! (we'll leave as an exercise to you to
find it --- it's on our website).
This is going to be an amazing year --- lots of new things to work on,
including JokerTV, a totally open TV receiver, plus several
experimental/for fun projects. Projects in C, Node.js, Python, Rust and
more, you name it, we have it. Plus resources for students --- we'll
give access to a high-speed server, all our samples (we'll even ship a
portable drive with them anywhere in the world, so don't worry about
slow connections) and various other perks.
You are welcome to check out the page (actual ideas at the bottom of the
page, with each project having it's own separate page as well) and
start early in the community bonding process as well as learning a bit
about our code ethics and practices. And of course, we'd love you to
stay around even if we are not invited to GSoC or if we cannot invite
you as a student.
The ideas we currently have
Important: If you have something else in mind that relates to subtitles
and accessibility please get in touch. We prefer that you do something
that you are passionate about even if it's something we hadn't
considered.
After you check out our ideas please continue reading to the bottom of
the page to get information about who we are, how we collaborate, what
resources we will provide to you, etc.
Some tasks descriptions are still vague. We know that. Feel free to get in touch for questions, or just check their page from time to time. We will update the descriptions often.
Core subtitle tool (CCExtractor itself)
	Name	Description	Tech you need to know	Tech you will learn	Difficulty
	Complete 708 support	This is one of the big ones. Why? Because it's been on our wish list for some time and until now no one has decided to really go for it; after the initial work it's always been incremental improvements, but no one has raised their hand and said "I'm going to complete this". It's possible the code base is not really friendly. Who knows. If this is the case we're OK with a total rewrite if that's what it takes to get this done. The details page has some more information if this picked your interest. This project is guaranteed to be selected if the proposal is good.	C	Video standards Subtitle standards CCExtractor internals Internationalization	Hard
	Add support for streaming Live TV	A number of streaming platforms now offer support for internet based live TV, which is great: It lets you watch TV on the go, it lets you get rid of cable, satellite and areal antennas... unfortunately, this live TV is not standardized at all. Your job is to do the work to add suport for Hulu and Youtube. We will pay for the subscription costs as well as any required infrastructure.	Any	Video standards Subtitle standards Live streaming platforms	Unknown
	Work on JokerTV integration	JokerTV is an excellent open hardware and software platform (think Arduino, but for TV). It's still early days, and we really want to be among the first supporting this amazing new platform. JokerTV can receive signals from all TV standards around the world (finally!, no more European or American models, etc). We will buy one device for the student (or students, if their ideas are different) that works on this. Abylay Ospan, the genius behind JokerTV has agreed to mentor.	C	Hardware Video standards Joker (the platform)	Unknown
	Write Python bindings for CCExtractor	This was partially done during GSoC 2017, but the approach was totally wrong --- a wrapper, instead of Cython. Let's cut our losses and start over.	C Python	Obscure C+Python topics CCExtractor internals	Medium
	Add support for DTMB countries	DTMB is the standard for Chinese TV, also implemented by countries such as Cuba. What kind of student is ideal for this task? One with lots of analytic skills and patience. If you are one of those, don't disregard this task just because you don't speak (or maybe, even care) about Chinese. The experience on dealing with this will be extremely valuable in the future. We will use part of the organization funds to buy standard documents you might need, a capture device, and in general, anything required to make your life easier.	C	DTMB Video standards Hardware Research	Unknown
	Improve our OCR subsystem	We use tesseract to OCR bitmap based subtitles. In theory this is straight forward, but when you take into consideration all variants (color, languages, subtitles burned-in image, even moving text such as tickers) the complexity grows fast. Still, the work done by PhD students in the past is great, and we're confident this year we can complete the work on this area if someone of the same caliber decides to join the effort.	C	Tesseract Imaging OCR	Suspected hard
	Add Japanese support	Captions are used by people all over the world on a regular basis. Most of us are familiar with regular horizontal captions at the bottom of the screen, but did you know that in Japan a common position for captions is vertically on the right or left side of the screen? Come learn more about what Japanese audiences need out of captions as well as how captioning standard likes IMSC and WebVTT support these features.	Japanese (or be good with foreign languages)	Depends	Suspected hard

Artificial Intelligence and clever algorithms
	Name	Description	Tech you need to know	Tech you will learn	Difficulty
	Poor man's Rekognition (II)	Amazon Rekognition is a (paid) service that is able to identify celebrity faces in a picture. Last year we did some work towards creating a free alternative. This year we want to improve on the past work.	Your choice	AI Computer vision	Unknown
	Poor man's Textract	Amazon Textract a (paid) service that "automatically extracts text and data from scanned documents. Amazon Textract goes beyond simple optical character recognition (OCR) to also identify the contents of fields in forms and information stored in tables.". We want to build a free alternative that provides an output of similar quality.	Your choice	AI Computer vision OCR	Unknown

Support tools we and other orgs use as part of their development process
	Name	Description	Tech you need to know	Tech you will learn	Difficulty
	The sample platform (/ continuous integration) project	The sample platform is a good way to help new contributors to check if their code doesn't introduce any regressions. It's pretty stable, but is often hard to interpret for new contributors, and still pretty slow if the queue builds up. We want to take the concepts of this existing platform and re-write it from scratch making use of the horizontally scalable cloud options that are nowadays available. This project is guaranteed to be selected if the proposal is good.	Git Python	Cloud services API's GitHub Actions GitHub API's Continuous Integration (CI) Automated deployments GitHub integration	Medium/Hard

New things we're currently interested on
	Name	Description	Tech you need to know	Tech you will learn	Difficulty
	A reference channel for Roku	Roku is currently the most common media streamer. It's cheap and neutral (it's not in any "fight"). Unfortunately, there aren't any good open source channels, so if you want to start your own you have to start from scratch. We want to fix that by creating the "reference" source code for a generic channel. We will send a free Roku to our student for development.	None	Brightscript Roku Video Streaming	Medium
	An "algorithm video creator" in Python	During Google Code-in we got some proof of concepts that are actually quite cool. We want to build a complete tool that helps study and understand algorithms	Python	Python internals Algorithms	Medium
	FFmpeg + Rust	This project is two fold: One, is create proper Rust bindings into FFmpeg's libraries. The 2nd, and harder, is create a "graph to code" generator	C or C++	FFmpeg's internals Rust	Possibly hard
	Extend rclone's web UI (mentored by Nick Craig-Wood, rclone's developer)	rclone is a fantastic tool to synchronize cloud storage. It's rsync for the cloud. Last year we started a web UI, and it was a successful GSoC project. We want to continue working on it.	Cloud (lots) Web (different tech)	---	Medium
	SwagLyrics	Last Summer of Code, we came up with a platform to align lyrics to their temporal location in the audio (https://github.com/SwagLyrics/autosynch). This year, we want to improve it, and integrate it to SwagLyrics proper.	Python (mainly)	Depends on your idea	Medium to Unknown
	Vote counter and reporter	More and more countries depend on electronic vote counting and/or reporting in their elections, and apparently no one can get this right. Either no one knows how to do it or they know exactly what they are doing. Both things are worrying, to say the least. We want to spend this summer working on an open-source solution everybody and use and audit, in any country.	Systems design	Flutter (frontend), your choice (backend)	Hard
	Mouseless for Linux	Mouseless is a nice tool to practice keyboard shortcuts for a few popular apps. Unfortunately it's only available for Mac. We'd like to create an open-source Linux version that can be easily extended.	Your choice	??	Unknown
	rutorrent mobile interface	rutorrent is the most popular web interface for rtorrent, which is possibly the most used BitTorrent client in linux. The job is to write a Flutter based web interface that uses rutorrent's backend service to provide a native interface.	Flutter	BitTorrent	Medium
	The next peer-to-peer protocol	BitTorrent is of course the world's most used peer to peer protocol. It's great, but it was designed before the cloud was ubiquitous and it doesn't make use of the places where you have the most storage or the most bandwidth. Can we design something for the next decade?	Depends	Peer-to-peer, cloud	Medium
	Linux tuning for network throughput	Come up with a system that tunes the linux kernel to maximize network throughput for a number of workloads, such as web server or BitTorrent	Linux	Kernel internals, Networking	Hard

About us
We are a small org, which means that your contribution will have a large
impact. It's not going to mean a 0.5% improvement on a big project ---
it's going to be more than 10% on a medium size one. If you like
challenges and want a chance to shine this is your place.
We have we think statistically amazing continuity in the team: Most
GSoC students from all the past years are still involved, even if they
are no longer eligible as students. They still contribute code, and they
mentor both in GSoC and the sister program GCI. As mentors, they also
come to the Summer of Code summit which traditionally takes place in
October.
We have mentors all over the world (North America, Europe, Asia and
Australia), so time zones are never a problem. Our main channel of
communication is a Slack channel to
which everyone is welcome. We expect all accepted students to be
available on Slack very often, even if you don't need to talk to your
mentor. This will help you ask questions when necessary, and you might
be able to help others out as well while working on your project.
Exception: If your country (such as Russia) has banned Slack please get in touch in we'll work out a solution with you. We absolutely want you to participate.
A mailing list
is also available for those that prefer email over slack. It's a new
mailing list (the old one hasn't been used in a long time) but it's
read by everyone involved in GSoC.
All our top committers will be mentoring. Many of them are former GSoC students or winners of GCI.
Perks
All accepted students get a programming book immediately after being
accepted, with the hope that they read them before the coding
starts. We want to see if this increases the quality of the work. So far
we have selected these three books (pick one), but we're open to
suggestions: Clean Code,
Elements of Programming Interviews in Python,
Cracking the code interview.
We will also provide to all accepted students: - 6 months of access
(from the acceptance date) to all courses in
educative.io - 12 months of
access (from the acceptance date) to
backtobackswe, which is a
fantastic resource to learn algorithms, prepare for coding interviews,
and in general learn fundamentals.
The student working on CEA-708 will also receive a copy of the latest
CEA-708 specification document.
About what we use
This is what we use today. It doesn't mean this is what we want
to continue using. Probably not --- we're really open to change. We're
just describing the status quo so you know what you are getting into :-)
The core tool that names the organization (CCExtractor) is a
command-line program written in C (not C++).
The current Windows GUI is written in C #, and we have another
GUI for Linux that's written with Qt, and a small GUI that's
integrated into the main program (C). In we're being honest, nothing is
great. Good news for you is that you can start over if you want.
The testing tool we use to run regression tests is mainly written in
Python, but it also used Javascript, CSS and some shell
scripting. The Test suite is written in C#. One of the projects this
year is about replacing it.
The prototype real time subtitle website is written in
NodeJS.
We also have a number of support tools that do a number of different
things, from downloading subtitles from streaming services to
translating them with Google Translate or DeepL. Most of them are
written in Python, but since they are small tools that do their
job you don't need to worry much about them.
For totally new things you can use whatever tool you feel is best for
the job.
About sample media and other resources
We work with huge files. Not all of them are huge, but many are. We know
that many students don't have access to high speed internet. To those
students we will ship (as soon as they are selected) a portable hard
drive with all our samples. So if your internet connection is not good,
don't worry --- as long as you can plug a USB drive to your development
computer you can participate with us.
We also have a shared Linux development server with lots of storage and
a Gigabit uplink. Students get an account on it and they are welcome to
use it. There's nothing there except our own work, so it's a trusted
environment (for a server that is connected to internet of course).
The sample platform also hosts a bunch of samples, both which are small
or decently sized.
Some projects have specific requirements: For example to add support for
JokerTV you will need a physical JokerTV device. We will send one to the
student that takes this project well before GSoC starts. The LiveTV
project requires a subscription to YouTube with LiveTV (whatever it's
called this week) and Hulu. We will pay for those. If your project
requires some cloud resources (Google Compute Engine, for example), we
will pay for that, too.
In general, you are not expected to pay for anything (other than your
own development computer and internet, of course) related to any
project.
If you need anything not mentioned (such as a book) let us know. Within
reason, we'll help you.
About the projects and getting accepted
Qualification: Our selection system is based on several factors. Of
course no student ranks in all criteria, so don't worry when you read
the list below.
Work on our core tool: Even if you are going to be working
on something totally different. This might seen counter
intuitive, but the thing is if you prove you can dig into our
(messy) code base, find yourself your way around it, and fix a
few bugs, you are just the kind of person we can trust to
"figure things out". GSoC is among other things, a learning
experience. No matter what project you decide to work on,
there's going to be roadblocks, things you don't know how to
do, etc. So we really like it when students embrace those
situations.
Qualification tasks specific to the project: The detail page
for some projects contains specific qualification tasks that
apply to them.
Contributions to existing open source projects: This can be
anything. From a good GitHub profile to pull-requests sent to
any other existing project, participation in hackathons, Google
Code-In, past GSoCs and so on.
A good proposal: This is the one criteria that is
non-negotiable. Your proposal has to be good, period.
Project popularity: Some ideas just have more competition,
so if participating in GSoC is a top priority for you (over
working on a specific project), consider applying to one of the
"niche" ideas. After all, that's a great way to get your foot
in the door :-)
Best core tool tasks
We're added a difficulty level to all our open issues on GitHub.
Best thing you can do is head there and see if you are able to fix some
of the easy ones and work your way up. We don't expect you to be able
to do the hard ones but we'd be impressed if you did :-)
For some of the easy ones you don't even need to know C. Just being
able to compile CCExtractor and dig around a bit will be enough.
The sample platform's issues are tagged with "gsoc-proposal-task", so
you can easily see what you can work on.
Take home qualification tasks
If instead of working on existing code you'd prefer to show us your
skills working on something new, you can pick one of these projects.
Community etiquette
It goes without saying that everyone in the community has to be polite
and respectful, and consider everyone else a member of a team and not a
competitor.
All developers are part of the team, by the way. Our Slack channel has
mentors, code-in participants, other students, or developers and users
that are none of the above but they all play some kind of role in
CCExtractor's community.
Part of being respectful is giving consideration to everyone else's
time. Most of us have day jobs, and as such are limited in the time we
can use to guide you. We'd like to spend it on quality discussions, and
not on things that are for example written on this website, things that
you can easily retrieve by reading documentation on used libraries or on
the software's help screen. Asking this kind of questions in the Slack
channel shows little respect for our time. This doesn't mean you can't
ask questions, but remember that being a clueless user and a lazy
developer are two very different things. If you ask those questions you
will probably get an answer as if you were a clueless user (polite no
matter what), but if you apply to GSoC you will be considered a lazy
developer. Google is your friend ;)
Tell things as you see them. Politely -you're not Linus-, but don't
sugar-coat it. We know some parts of our code is poorly written, poorly
documented, etc. It stands out, so you will know when you dig in. No one
is going to be offended by having that code rewritten or refactored.
Peer review applies to everybody's work and is done by everybody.
Cross project proposals
Because we use a number of libraries and in fact "are a library"
ourselves (meaning other programs can link CCExtractor as a library, or
invoke the binary) we interact with other communities and their
software. From time to time there's a chance to do something
interesting that affects CCExtractor and something else (FFmpeg comes to
mind, but also Kodi, VLC, libGPAC, Red Hen, to mention just a few of our
friends that typically participate in Summer of Code). So how does this
work? As long as the work benefits CCExtractor and it's part of your
summer project, we're OK with you spending some time on the other
project. For example if you are improving our MP4 support, for which we
use libGPAC, and need to fix or improve something on libGPAC you are
welcome to do so. If you do, make sure you submit your changes to their
maintainers and follow through with their merge process.
Your proposal
You can propose to do any of the following ideas, or you can bring your
own. In any case, make sure you run them by us before you actually
submit your proposal.
At the very least your proposal needs to
	Explain what you do want to do, why it is important to you (don't make up a story here — the reason can be that you need it, that you just think it's cool, that you have an itch to work on it, etc), and why it could be important or useful to us.
	Explain how you intend to accomplish the goal, in enough detail that makes it clear that you have done your homework. For example, “I will modify the CCExtractor binary so that it's able to convert audio to text with perfect accuracy” is the same thing as sending your proposal to the trash. You need to have a plan.
	Detail the timeline explaining what the expected progress is for each week or every two weeks (pay special attention to the milestones within the GSoC timeline itself, of course) and how we should validate the results.
	Detail what kind of support you will need from us. For example, if you are going to need test streams, hardware, access to a server, etc, let us know, so we can prepare everything for you as soon as possible.
	Detail your expected working hours in UTC. We're used to weird working schedules, so don't worry about working in the middle of the night, or weekends instead of other days, etc. Knowing your hours may help us to match you better with a mentor.
	Mention your planned absences. We don't need you to detail what you will be doing when you are not working of course, but if you are going away for any reason we need to know so we don't think you've abandoned.
	Link to your GitHub (or any other repository) profile, if you have one, so we can take a look at your previous work.
	GSoC is a coding program: This means that ideas that are about testing (unless it involves coding something to test our programs ;) ), website design, etc, are out.
	However, we want to have good documentation: Make sure you have time to write a good technical article explaining your work.
	Be realistic and honest with the timeline. Consider each week you should work around 30 hours. If your timeline reserves a lot of time for minor things we'll think that you are not going to be working full-time in GSoC. On the other hand if you promise to do things in a lot less than that it seems realistic to us it will seem that you don't really know how much work things take.
	If you are going to be using 3rd party libraries (that's OK), make sure to validate that their license is compatible with GPLv2 (which is ours). List the libraries in your proposal. Check that they are cross-platform. If you will need to extend those libraries in any way please explain. In this case, your proposal should include time to get that extension submitted to the maintainers (we love to contribute to other projects).

Something else: Mentors often have their fingers in several pies. If you
send the same proposal to several orgs everyone will know. So do
yourself a favor and don't do that. You can apply to several
organizations and that's totally fine, but each organization will want
to see that you have put the time to write a great proposal that is
focused on them.
Useful resources
A great resource for GSoC.



© 2024 CCExtractor

